Abstract

This paper evaluates three widely used particle stochastic separated flow (SSF) models through large eddy simulation (LES) of gas-particle two-phase turbulent flows over a backward-facing step. The ability of the models to predict mean velocities, fluctuating velocities, and spatial dispersion of particles are carefully examined in comparison with LES reference results. Evaluation shows that the improved time-series SSF model produces good predictions on mean and fluctuating velocities in the particle phase which highly agree with LES results. However, the time-series SSF model has higher computational cost. Further, compared with the two other models, the time-series SSF model predicts better results on the spatial dispersion of particles. It has an overall advantage in terms of accuracy and efficiency in predicting velocity moments and particle dispersion even without the presence of so many particles. The dependence of different SSF models on the number of computational particles in a converged flow field is also discussed. This paper is useful for the selection and application of SSF models in numerical simulations of practical two-phase turbulent flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.