Abstract

The measurement of nanoparticle size, and size distribution, is important to the development of pharmaceutical nanoparticle products and their manufacturing processes. In this work we report on the use of 4 widely-used liquid-phase techniques, dynamic light scattering, differential centrifugal sedimentation, particle tracking analysis, and tuneable resistive pulse sensing to measure 4 different batches of AZD2811NPs. The techniques rely on different physical principles to measure nanoparticle size. The batches cover a range of different manufacturing scales and different sites of manufacture, and were made to support toxicity, clinical, and engineering studies. The results from the different techniques and different batches are compared in terms of the average size, and size distribution, measured. In addition, we discuss the suitability of techniques for different applications, for example, QC and process understanding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call