Abstract

Osteoporosis is a bone disease that raises the risk of fracture due to the density of the bone mineral being low and the decline of the structure of bone tissue. Among other techniques, such as Dual-Energy X-ray Absorptiometry (DXA), 2D x-ray pictures of the bone can be used to detect osteoporosis. This study aims to evaluate deep convolutional neural networks (CNNs), applied with transfer learning techniques, to categorize specific osteoporosis features in knee radiographs. For objective labeling, we obtained a selection of patient knee x-ray images. The study makes use of the Visual Geometry Group Deep (VGG-16), and VGG-16 with fine-tuning. In this work, the deployed CNNs were assessed using state-of-the-art metrics such as accuracy, sensitivity, and specificity. The evaluation shows that fine-tuning enhanced the VGG-16 CNN's effectiveness for detecting osteoporosis in radiographs of the knee. The accuracy of the VGG-16 with parameter fine-tuning was 88% overall, while the accuracy of the VGG-16 without parameter fine-tuning was 80%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call