Abstract

In this study, asbestos-free automotive brake pads produced from palm kernel fibers with epoxy-resin binder was evaluated. Resins varied in formulations and properties such as friction coefficient, wear rate, hardness test, porosity, noise level, temperature, specific gravity, stopping time, moisture effects, surface roughness, oil and water absorptions rates, and microstructure examination were investigated. Other basic engineering properties of mechanical overload, thermal deformation fading behaviour shear strength, cracking resistance, over-heat recovery, and effect on rotor disc, caliper pressure, pad grip effect and pad dusting effect were also investigated. The results obtained indicated that the wear rate, coefficient of friction, noise level, temperature, and stopping time of the produced brake pads increased as the speed increases. The results also show that porosity, hardness, moisture content, specific gravity, surface roughness, and oil and water absorption rates remained constant with increase in speed. The result of microstructure examination revealed that worm surfaces were characterized by abrasion wear where the asperities were ploughed thereby exposing the white region of palm kernel fibers, thus increasing the smoothness of the friction materials. Sample S6 with composition of 40% epoxy-resin, 10% palm wastes, 6% Al2O3, 29% graphite, and 15% calcium carbonate gave better properties. The result indicated that palm kernel fibers can be effectively used as a replacement for asbestos in brake pad production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.