Abstract

Oxalate is a common component of many foods typically present as a salt of oxalic acid, which will be excreted in the urine. Hyperoxaluria is known to be a considerable risk factor for urolithiasis, and formation of oxalate kidney stone. Oxalate degradation by the probiotic anaerobic bacterium Oxalobacter formigenes DSM 4420 has high yield and efficiency both in the human colon helping to prevent hyperoxaluria and disorders such as the development of kidney stones and as a novel approach in reducing the high concentration of foodstuff oxalate content such as tea, coffee, and nuts. For determining the effective factors to enhance high concentration oxalate biodegradation activity of Oxalobacter formigenes DSM 4420 Plackett-Burman screening design was applied to evaluate the impact of 10 process variables. After determining the main factors by screening design, a response surface methodology was used to find suitable treatment combination for oxalate biodegradation by this probiotic. A second-order quadratic model estimated that the highest biodegradation of 60.2% was achieved in presence of 1.35 (g/L) inulin, 36.56 (g/L) glucose, 26 (mmol/L) ammonium oxalate, and pH 6. In other word, the optimum point showed that in the above condition the high concentration of ammonium oxalate content of 26 mmoL/L will reach to 9.95 mmoL/L. Reconfirmation experiment showed the validity of predicted optimum conditions. A surface model using the RSM and optimizing this model using the GA technique, resulted in a useful method of finding an optimal set of process parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call