Abstract
On-board sensors in vehicles are able to capture real-time data representations of variables conditioning the traffic flow. Extracting knowledge by combining data from different vehicles, together with machine learning algorithms, will help both to optimise transportation systems and to maximise the drivers' and passengers' comfort. This paper provides a summary of the most common multivariate outlier detection methods and applies them to data captured from sensor vehicles with the aim to find and identify different abnormal driving conditions like traffic jams. Outlier detection represents an important task in discovering useful and valuable information, as has been proven in numerous researches. This study is based on the combination of outlier detection mechanisms together with data classification methods. The output of the outlier detection phase will then be fed into several classifiers, which have been implemented to assess if the multivariate outliers correspond with traffic congestion situations or not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.