Abstract
The objective of the present investigation was formulation of raloxifene loaded solid lipid nanoparticles (R-SLN) for oral administration and evaluation of its anticancer potential in 7,12- dimethylbenzanthracene (DMBA)-induced breast cancer in Sprague-Dawley rats. Optimized R-SLN formulation prepared by modified micro-emulsion method resulted in R-SLN of 288.0±28.5 nm size and 95.56% entrapment efficiency. R-SLN exhibited in vitro prolonged release of raloxifene for 72 h in phosphate buffered saline. R-SLN was stable in simulated gastro-intestinal (GIT) fluids consisting of pH 1.2, pH 7.4, simulated gastric fluid and simulated intestinal fluid. A two-fold increase was observed in raloxifene oral bioavailability from R-SLN. R-SLN exhibited enhanced efficacy and chemopreventive activity over pure raloxifene as indicated by evaluation of tumor burden (P < 0.001) and tumor incidence (P < 0.001). The results indicate the potential of raloxifene solid lipid nanoparticles in optimizing chemoprevention of breast cancer by R-SLN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.