Abstract

The so-called tube-gel method is a sample preparation protocol allowing for management of SDS for protein solubilization through in-gel protein trapping. Because of its simplicity, we assumed that once miniaturized, this method could become a standard for large scale experiments. We evaluated the performances of two variants of the miniaturized version of the tube-gel method based on different solubilization buffers (Tris-SDS or urea-SDS). To this end, we compared them to two other digestion methods: (i) liquid digestion after protein solubilization in the absence of SDS (liquid method) and (ii) filter-aided sample preparation (FASP). As large-scale experiments may require long term gel storage, we also examined to which extent gel aging affected the results of the proteomics analysis. We showed that both tube-gel and FASP methods extracted membrane proteins better than the liquid method, while the latter allowed the identification and quantification of a greater number of proteins. All methods were equivalent regarding quantitative stability. However, important differences were observed regarding post-translational modifications. In particular, methionine oxidation was higher with the tube-gel method than with the other methods. Based on these results, and considering time, simplicity, and cost aspects, we conclude that the miniaturized tube-gel method is suitable for sample preparation in the context of large-scale experiments.

Highlights

  • Sample preparation for proteomics analyses is crucial, since it determines the quality of the final results

  • In the perspective of standardizing the use the tube-gel method for large-scale experiments, we developed a miniaturized version with two variants based on different buffers

  • To evaluate the quality of the resulting data, we compared the performances of these two variants to those of two other commonly used sample preparation methods, liquid and filter-aided sample preparation (FASP), using the sample protein pellet and the same amounts of proteins and trypsin

Read more

Summary

Introduction

Sample preparation for proteomics analyses is crucial, since it determines the quality of the final results. It determines which population of proteins will be analyzed, and whether the integrity of these proteins, including their post-translational modifications (PTMs), will be conserved. In bottom-up shotgun experiments, protein extraction is directly followed by protein digestion, the efficiency of which depends on the sample composition (solvents, detergents, chaotrops). The last step is mass spectrometry (MS) analysis, which is incompatible with the presence of sodium dodecyl sulfate (SDS) in the final peptide mixture. SDS is of one of the most powerful detergents, useful for the extraction of proteins in general, and membrane proteins in particular

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.