Abstract
AimThis study aims to develop a cardiac arrest prediction model using deep learning (CAPD) algorithm and to validate the developed algorithm by evaluating the change in out-of-hospital cardiac arrest patient prognosis according to the increase in scene time interval (STI). MethodsWe conducted a retrospective cohort study using smart advanced life support trial data collected by the National Emergency Center from January 2016 to December 2019. The smart advanced life support data were randomly partitioned into derivation and validation datasets. The performance of the CAPD model using the patient's age, sex, event witness, bystander cardiopulmonary resuscitation (CPR), administration of epinephrine, initial shockable rhythm, prehospital defibrillation, provision of advanced life support, response time interval, and STI as prediction variables for prediction of a patient's prognosis was compared with conventional machine learning methods. After fixing other values of the input data, the changes in prognosis of the patient with respect to the increase in STI was observed. ResultsA total of 16,992 patients were included in this study. The area under the receiver operating characteristic curve values for predicting prehospital return of spontaneous circulation (ROSC) and favorable neurological outcomes were 0.828 (95% confidence interval 0.826–0.830) and 0.907 (0.914–0.910), respectively. Our algorithm significantly outperformed other artificial intelligence algorithms and conventional methods. The neurological recovery rate was predicted to decrease to 1/3 of that at the beginning of cardiopulmonary resuscitation when the STI was 28 min, and the prehospital ROSC was predicted to decrease to 1/2 of its initial level when the STI was 30 min. ConclusionThe CAPD exhibits potential and effectiveness in identifying patients with ROSC and favorable neurological outcomes for prehospital resuscitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.