Abstract

The aim of this study was to assess and analyze the exit dose in radiotherapy using optically stimulated luminescence dosimeter (OSLD) with therapeutic photon beams. Measurements were carried out with OSLD to estimate the exit dose in phantom for different field sizes, various phantom thicknesses, and with added backscatter material. The data obtained were validated with ionization chamber data where applicable. A correction factor was found to determine the actual dose delivered at the exit surface using measured and theoretical dose. The exit dose factor with Co-60, 6 MV, and 18 MV beams for 10 cm phantom thickness was found to be 0.752 ± 0.38%, 0.808 ± 0.34%, and 0.882 ± 0.42%. The dose enhancement factor with field size was ranging from 3% to 7.7% for Co-60 beam, from 2.6% to 6.6% for 6 MV, and from 2.5% to 4.7% for 18 MV beams at 10 cm depth of the phantom with 20 cm backscatter. The percentage reduction in exit dose with no backscatter material at 25 cm depth with field size of 10 cm × 10 cm was 5.6%, 4.4%, and 4.0%, less than the dose with full backscatter thickness of 20 cm for Co-60 beam, 6 MV, and 18 MV beam. The promising results confirm that accurate in vivo exit dose measurements are possible with this potential dosimeter. This technique could be implemented as a part of quality assurance to achieve quality treatment in radiotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call