Abstract
In the spin-exchange relaxation-free (SERF) magnetometer of a perpendicular pump-probe configuration, the pump and probe beam characteristics significantly affect the performance. In this paper, an efficient evaluation of optical parameters to improve the sensitivity of a miniature magnetometer has been presented. We have determined the pump light's optimal intensity and wavelength through theoretical analysis and the zero-field resonance experiments. Chirp signals are applied to measure the optical rotations at different probe intensities and frequencies. Through theoretical and experimental analysis of noise source characterization under different beam intensities and wavelengths, we demonstrate that dual-beam magnetometer performance is mainly limited by photon shot noise. Based on the optimum pump and probe beam parameters, we demonstrate magnetic field sensitivity of 6.3 fT/Hz in an 87Rb vapor cell filled with nitrogen gas, with an active measurement volume of 3 × 3 × 3 mm3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.