Abstract
Abstract. Recently available satellite observations from the water vapor channel (6.5–7.1 μm) of the Imager on-board India's geostationary satellite, INSAT-3D have been used to estimate Upper Tropospheric Humidity (UTH). In this study, operationally retrieved UTH product has been compared and validated for the period of Jan–Jun, 2014, using in-situ and satellite measurements. In-situ measurements of UTH have been indirectly derived using humidity profiles obtained from a network of radiosonde stations from NOAA/ESRL database. Meteosat-7 UTH products have been used as satellite measurements. The validation of INSAT-3D UTH against UTH derived from radiosonde profiles shows reasonable agreement, with linear correlation coefficients ranging from 0.78 to 0.87 and the slope of the regression line ranging from 0.52 to 0.77. The UTH tends to overestimate observed humidity by ~4 % with RMS difference of ~12 %. Comparison of INSAT-3D UTH product with Meteosat-7 UTH product suggests a good match with RMS difference of 7.61% and a mean bias of −0.43 %, linear correlation coefficients varying from 0.88 to 0.93 and slope of the regression line varying from 0.64 to 1.08. The UTH products from INSAT-3D and Meteosat-7 have also been inter-compared by validating the two against the UTH derived from a set of collocated radiosonde observations. INSAT-3D UTH shows a RMSD of 10.65 % and bias of 0.78 % which matches very well with Meteosat-7 UTH with a RMSD of 10.31 % and bias of −0.53 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.