Abstract

Abstract During May and June 2014, NOAA X-Pol (NOXP), the National Severe Storms Laboratory’s dual-polarized X-band mobile radar, was deployed to the Pigeon River basin in the Great Smoky Mountains of North Carolina as part of the NASA Integrated Precipitation and Hydrology Experiment. Rain gauges and disdrometers were positioned within the basin to verify precipitation estimates from various radar and satellite precipitation algorithms. First, the performance of the Self-Consistent Optimal Parameterization–Microphysics Estimation (SCOP-ME) algorithm for NOXP was examined using ground instrumentation as validation and was found to perform similarly to or slightly outperform other precipitation algorithms over the course of the intensive observation period (IOP). Radar data were also used to examine ridge–valley differences in radar and microphysical parameters for a case of stratiform precipitation passing over the mountains. Inferred coalescence microphysical processes were found to dominate within the upslope region, while a combination of processes were present as the system propagated over the valley. This suggests that enhanced updrafts aided by orographic lift sustain convection over the upslope regions, leading to larger median drop diameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.