Abstract
Recent and highly accurate topographic data should be used for flood inundation modeling, but this is not always feasible given time and budget constraints so the utility of several on-line digital elevation models (DEMs) is examined with a set of steady and unsteady test problems. DEMs are used to parameterize a 2D hydrodynamic flood simulation algorithm and predictions are compared with published flood maps and observed flood conditions. DEMs based on airborne light detection and ranging (LiDAR) are preferred because of horizontal resolution, vertical accuracy (∼0.1 m) and the ability to separate bare-earth from built structures and vegetation. DEMs based on airborne interferometric synthetic aperture radar (IfSAR) have good horizontal resolution but gridded elevations reflect built structures and vegetation and therefore further processing may be required to permit flood modeling. IfSAR and shuttle radar topography mission (SRTM) DEMs suffer from radar speckle, or noise, so flood plains may appear with non-physical relief and predicted flood zones may include non-physical pools. DEMs based on national elevation data (NED) are remarkably smooth in comparison to IfSAR and SRTM but using NED, flood predictions overestimate flood extent in comparison to all other DEMs including LiDAR, the most accurate. This study highlights utility in SRTM as a global source of terrain data for flood modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.