Abstract

AbstractA general procedure is presented for generating one‐electron integrals over any arbitrary potential operator that is a function of radial distance only. The procedure outlines that for a nucleus centered at point C integrals over Cartesian Gaussians can be written as linear combinations of 1‐D integrals. These Cartesian Gaussian functions are expressed in a compact form involving easily computed auxiliary functions. It is well known that integrals over the Coulomb operator can be expressed in terms of Fn(T) integrals, where By means of a substitution for Fn(T) by other simple functions, algorithms that form integrals over an arbitrary function can be generated. Formation of such integrals is accomplished with minor editing of existing code based on the McMurchie–Davidson formalism. Further, the method is applied using the inverse‐square distance and Yukawa potential operators V(r) over Cartesian Gaussian functions. Thus, the proposed methodology covers a large class of one‐electron integrals necessary for theoretical studies of molecular systems by ab initio calculations. Finally, by virtue of the procedure's recursive nature it provides us with an efficient scheme of computing the proposed class of one‐electron integrals. © 1993 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.