Abstract
Antecedent anomalies of sea surface temperature and atmospheric circulation are important signals for making long-term streamflow forecasts. In this study, four groups of ocean-atmospheric indices, i.e, El Nino Southern Oscillation (ENSO), the Northern Hemisphere atmospheric circulation, the Southern Hemisphere atmospheric circulation (SAC), and the Western Pacific and Indian Ocean SST (WPI), are evaluated for forecasting summer streamflow of the Yangtze River. The gradient boosting regression tree (GBRT) is used to forecast streamflow based on each group of indices. The score based on receiver operating characteristics (ROC) curves, i.e., area under the ROC curve (AUC), is used to evaluate skills of models for identifying the high category and the low category of summer streamflow. It is found that the ENSO group and the SAC group show higher AUC values. Furthermore, both AUC values of GBRT models and individual indices show that the low flow years are easier to be identified than the high flow years. The result of this study highlights the skill from the Southern Hemisphere circulation systems for forecasting summer streamflow of the Yangtze River. Results of relative influences of predictors in GBRT models and AUC of individual indices indicate some key ocean-atmospheric indices, such as the Multivariate ENSO Index and the 500-hPa height of the east of Australia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.