Abstract

Abstract The development of autonomous surface vehicles, such as the Boeing Liquid Robotics Wave Glider, has revolutionized our ability to collect surface ocean–lower atmosphere observations, a crucial step toward developing better physical understanding of upper-ocean and air–sea interaction processes. However, due to the wave-following nature of these vehicles, they experience rapid shifting, rolling, and pitching under the action of surface waves, making motion compensation of observations of ocean currents particularly challenging. We present an evaluation of the accuracy of Wave Glider–based ADCP measurements by comparing them with coincident and collocated observations collected from a bottom-mounted ADCP over the course of a week-long experiment. A novel motion compensation method, tailored to wave-following surface vehicles, is presented and compared with standard approaches. We show that the use of an additional position and attitude sensor (GPS/IMU) significantly improves the accuracy of the observed currents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call