Abstract

A new approach to evaluate activation energy for nucleation in metal chemical vapor deposition (CVD) is presented. Deposition is performed by laser induced chemical vapor deposition (LCVD) using a low laser power and a high scan speed, so that only discrete particles in the initial nucleation stage are formed. The nucleation activation energy is then obtained from a relationship between the laser-induced surface temperature distribution and the particle distribution. The activation energy is directly related to the nucleation barrier, and hence the difference in the nucleation activation energies on different substrates may be used to explain the chemical selectivity which is often observed during metal CVD processes. This approach is experimentally applied to aluminum CVD using dimethylethylamine alane (DMEAA) precursor, and its nucleation activation energy is found to be 25kcal/mol on silicon surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.