Abstract
A promising process is under development for the removal of NOx and regeneration of Fe(II)EDTA in a novel biotrickling filter–anaerobic baffled reactor (BTF–ABR) integrated system at 50 ± 0.5 ℃. In this work, we investigated the NOx removal capacity of a BTF under different O2 concentrations (7.0 vol%, 5.25 vol% and 3.5 vol%), and tested the effect of an ABR on NOx removal and regeneration of Fe(II)EDTA. The results showed that the NOx removal capacity was significantly increased with the O2 concentration reduced from 7.0% to 3.5%. The microoxygen environment produced by the BTF–ABR integrated system was more conducive to the removal of NOx and regeneration of Fe(II)EDTA compared with that in the BTF. Real–time polymerase chain reaction (PCR) analysis showed that the coordinated expression of denitrification genes was the major reason for no N2O emission, along with no nitrate and nitrite accumulation. The 16S rRNA gene amplicon sequencing analysis showed that the cooperation of denitrifying bacteria (Klebsiella, Petrimonas, Rhodococcus and Ochrobactium) and iron–reducing bacteria (Klebsiella, Geobacter and Petrimonas) in the system was the key to the stable and efficient removal of NOx and the regeneration of Fe(II)EDTA simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.