Abstract
Signature abnormalities in the cell cycle and apoptotic pathway have been identified in mantle cell lymphoma (MCL), affording the opportunity to develop targeted therapies. In this study, we tested a novel class of kinase inhibitors, styryl sulfones, which differ from prior cell cycle inhibitors in that they are not related to purines or pyrimidines. We observed that two closely related compounds, ON013100 and ON01370, altered the growth and cell cycle status of MCL lines and potently inhibited the expression of several important molecules, including cyclin-dependent kinase 4, p53, mouse double minute 2 (MDM2), and cyclin D as well as increased cyclin B expression. Using both terminal deoxy transferase uridine triphosphate nick end-labelling and poly ADP-ribose polymerase assays, we found that these compounds caused apoptosis in MCL cells. In addition, using molecular analyses, we observed the modulation of caspase-3 activity but not the expression of B-cell lymphoma family molecules. Next, we investigated the cytotoxicity of the MCL lines upon treatment with styryl sulfone compounds in combination with other currently used chemotherapeutic agents, such as doxorubicin (DOX) or vincristine (VCR). We found that the combination of DOX plus styryl sulfone or VCR plus styryl sulfone increased cytotoxicity by one log scale, compared with the single styryl sulfone compound. Thus, styryl sulfones alone, or in combination with chemotherapeutic agents, present attractive opportunities for new drug development in MCL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.