Abstract

Abstract The performance of the Global Environmental Multiscale (GEM) model, the Canadian operational numerical model, in reproducing atmospheric low-frequency variability is evaluated in the context of Northern Hemisphere blocking climatology. The validation is conducted by applying a comprehensive but relatively simple blocking detection algorithm to a 20-yr (1987–2006) integration of the GEM model in climate mode. The comparison to reanalysis reveals that, although the model can reproduce Northern Hemisphere blocking climatology reasonably well, the maximum blocking frequency over the North Atlantic and western Europe is generally underestimated and its peak season is delayed from late winter to spring. This contrasts with the blocking frequency over the North Pacific, which is generally overestimated during all seasons. These misrepresentations of blocking climatology are found to be largely associated with the biases in climatological background flow. The modeled stationary waves show a seasonal delay in zonal wavenumber 1 and an eastward extension in zonal wavenumber-2 components consistent with blocking frequency biases. High-frequency eddies are, however, consistently underestimated both in the North Atlantic and Pacific, indicating that the biases in eddy fields might not be the main reason for the blocking biases in the North Pacific.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call