Abstract

Reliable measurement of voluntary human effort is essential for effective and safe interaction between the wearer and an assistive robot. Existing voluntary effort prediction methods that use surface electromyography (sEMG) are susceptible to prediction inaccuracies due to non-selectivity in measuring muscle responses. This technical challenge motivates an investigation into alternative non-invasive effort prediction methods that directly visualize the muscle response and improve effort prediction accuracy. The paper is a comparative study of ultrasound imaging (US)-derived neuromuscular signals and sEMG signals for their use in predicting isometric ankle dorsiflexion moment. Furthermore, the study evaluates the prediction accuracy of model-based and model-free voluntary effort prediction approaches that use these signals. The study evaluates sEMG signals and three US imaging-derived signals: pennation angle, muscle fascicle length, and echogenicity and three voluntary effort prediction methods: linear regression (LR), feedforward neural network (FFNN), and Hill-type neuromuscular model (HNM). In all the prediction methods, pennation angle and fascicle length significantly improve the prediction accuracy of dorsiflexion moment, when compared to echogenicity. Also, compared to LR, both FFNN and HNM improve dorsiflexion moment prediction accuracy. The findings indicate FFNN or HNM approach and using pennation angle or fascicle length predict human ankle movement intent with higher accuracy. The accurate ankle effort prediction will pave the path to safe and reliable robotic assistance in patients with drop foot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call