Abstract

In this article, nisin(N)-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) were prepared using the single-solvent evaporation method with a rhamnolipid(R) cosurfactant. The antibacterial-antibiofilm effects of the prepared formulation and free nisin were evaluated against S. aureus (ATCC 25923). The characterization of NPs was analyzed using scanning electron microscopy (SEM), Zetasizer and Fourier-transform infrared spectroscopy (FTIR). The drug encapsulation efficiency and loading capacity percentages of NPs were calculated by the spectrophotometric method. The drug release of N-loaded PVA-R-PLGA NPs was determined by the dialysis bag method. The antibacterial and antibiofilm activity of N-PVA-R-PLGA NPs was determined. PVA-R-PLGA-NPs were found to be spherical with sizes of ~140 nm, according to the SEM analysis and surface charge of N-PVA-R-PLGA NPs -53.23 ± 0.42 mV. The sustained release of N (≥72% after 6 h) was measured in PVA-R-PLGA-NPs. The encapsulation efficiency percentage of N-PVA-R-PLGA NP was 78%. The MIC values of free nisin and N-PVA-R-PLGA NPs were 256 μg/mL and 64 μg/mL, respectively. The antibiofilm inhibition percentages of free nisin and N-PVA-R-PLGA NPs were 28% and 72%, respectively. These results reveal that N-PVA-R-PLGA NPs are a promising formulation for use in infections caused by S. aureus compared to free nisin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call