Abstract

Abstract Degradation of Solid Oxide Fuel Cell (SOFC) anode during discharge operation and redox cycles operation were evaluated by three-dimensional electrochemical calculations using a Lattice Boltzmann method (LBM). Three dimensional microstructures were obtained by Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) reconstruction. In the electrochemical calculations, changes in exchange current density and ionic conductivity of Yttria stabilized Zirconia (YSZ) during the operations were assumed and their values were calculated by fitting the calculated overpotential values to the experimental ones. Changes in triple phase boundary density calculated from the reconstructed microstructures were inconsistent with the gradual degradation observed during repeated redox-discharge cycles. Changes of the fitted exchange current density and YSZ ionic conductivity values in both discharge operation and redox cycle operation showed same tendency as the experimental results. Change in exchange current density or YSZ ionic conductivity should be considered as an essential factor which governs the cell performance change regardless of the redox treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.