Abstract
A new resist formulation was successfully patterned using near field optical microscopy in order to simulate the conditions prevailing in silver based plasmonic imaging tools. Radiation at 476nm was transmitted through a near field scanning optical microscopy fiber probe tip to cross-link a film of poly(4-methacrylmethyl styrene) via polymerization of pendant methacryloyl groups using camphorquinone and dimethyl aniline as an initiating system. Patterns were generated by scanning at several speeds in order to moderate the dose while maintaining a constant probe height of about 5nm above the sample through shear force feedback. After development, lines corresponding to the exposed regions were observed. At a scanning speed of 4μm∕s, the observed pattern has a full width at half maximum of 275nm and a height of ∼25nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.