Abstract

AbstractThree 3‐mercaptopropionate thiols, 1,6‐Hexane bis(3‐mercaptopropionate) (HD‐SH), trans‐1,4‐Cyclohexanedimethyl bis(3‐mercaptopropionate) (CHDM‐SH), and 4,4′‐Isopropylidenedicyclohexane bis(3‐mercaptopropionate) (HBPA‐SH) were formulated with 1,3,5‐triallyl‐1,3,5‐triazine‐2,4,6(1H,3H,5H)‐trione (TATATO) and photoinitiator. The formulations were photopolymerized via thiol‐ene photopolymerization. A ternary experimental design was employed to elucidate the influence the three thiols on the thermomechanical and coatings properties of thiol‐ene photopolymerizable materials. Tensile strength, tensile modulus, elongation‐to‐break, glass transition temperature (Tg), and crosslink density (XLD) were investigated. Coating properties including pencil hardness, pull‐off adhesion, MEK double rubs, and gloss were also investigated. Relative reaction conversion was determined by photo differential scanning calorimeter (PDSC). Thiol‐ene photopolymerizable materials containing HBPA‐SH resulted in improving tensile strength, tensile modulus, Tg, and pencil hardness but lowering of crosslink density and relative conversion. This was attributed to steric and rigidity of the double cycloaliphatic structure. The inclusion of CHDM‐SH into the systems resulted in the synergistic effect on elongation‐to‐break and pull‐off adhesion. The HD‐SH generally resulted in a diminution of thermomechanical and coating properties, but improved the crosslink density. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.