Abstract

In vivo evaluations of chemicals in neurotoxicity have certain limitations due to the considerable time and cost required, necessity of extrapolation from rodents to humans, and limited information on toxicity mechanisms. To address this issue, the development of in vitro test methods using new approach methodologies (NAMs) is important to evaluate the chemicals in neurotoxicity. Microelectrode array (MEA) allows the assessment of changes in neural network activity caused by compound administration. However, studies on compound evaluation criteria are scarce. In this study, we evaluated the impact of pesticides on neural activity using MEA measurements of human iPSC-derived neurons. A principal component analysis was performed on the electrical physiological parameters obtained by MEA measurements, and the influence of excessive neural activity due to compound addition was defined using the standard deviation of neural activity with solvent addition as the reference. By using known seizurogenic compounds as positive controls for neurotoxicity in MEA and evaluating pesticides with insufficient verification of their neurotoxicity in humans, we demonstrated that these pesticides exhibit neurotoxicity in humans. In conclusion, our data suggest that the neurotoxicity evaluation method in human iPSC neurons using MEA measurements could be one of the in vitro neurotoxicity test methods that could replace animal experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.