Abstract

There is an increasing trend for ceramic components to replace metal ones due to their excellent physical, chemical and mechanical properties. However, many of the characteristics that make ceramics so attractive also make them difficult to manufacture by traditional machining methods. The purpose of this study was to develop neural models based on acoustic emission and cutting power signals to estimate the roughness of advanced ceramics during the grinding process. Testing of alumina ceramic specimens was performed on a tangential surface grinder with a diamond wheel. The tests were performed using three cutting depths, 120 µm, 70 µm and 20 µm, a grinding wheel speed of 35 m/s and table speed of 2.3 m/s. Four neural models were studied: multilayer perceptron neural networks, radial basis function neural networks, general regression neural networks and adaptive neuro-fuzzy inference system. To better compare the performance of the neural models used in this study, an algorithm was developed to train all the possible combinations of inputs and parameters of each type of neural network. The results of the best models produced very low error values within the range of accuracy of the measuring instrument. Thus, it can be stated that these models achieved 100% accuracy in estimating workpiece roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.