Abstract

Discoveries of heavy crude oil in the Neoproterozoic rocks (Infracambrian rock sequence) from the Bikaner-Nagaur Basin of India emphasize the significance of studying and exploring the Neoproterozoic source rock potential in the southeastern part of Pakistan. This study evaluates the potential of the source rock in the Infracambrian rock sequence (Salt Range Formation) based on surface geochemical surveys, Rock–Eval pyrolysis, source biomarkers, geophysical characterization, and seismic inversion using machine learning for maturity index estimation. Core samples of Infracambrian rock were extracted for Rock–Eval pyrolysis and biomarker characterization. Additionally, 81 geomicrobial soil and gas samples were collected from the surface to explore the petroleum system and potential source rocks in the subsurface. Advanced interpretation techniques were used to investigate the origin and concentration of hydrocarbon gases at the surface, including Rock–Eval pyrolysis, thermal maturity, source biomarkers, and the environment of deposition of organic matter. The results show that the investigated samples are characterized by restricted marine clay devoid of sedimentary carbonate facies with thermal maturity in the early stage of the oil generation window. The seismic inverted maturity index profile demonstrates a reasonable correlation of thermal maturity with the biomarkers and Rock–Eval pyrolysis. Further scrutiny of the surface geochemical samples confirms the presence of higher concentrations of thermogenic C2–C4 hydrocarbons in the vicinity of anticlinal structures, suggesting the existence of an effective migration path along deep-seated faults to the surface. This study concludes that the Infracambrian rocks on the eastern flank of Pakistan are thicker, thermally mature, and have deep-seated structural closures, indicating a greater probability of heavy and light oil in this area than in the Bikaner–Nagaur Basin, India.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.