Abstract

Abstract The diurnal cycles of near-surface variables and turbulent heat fluxes are evaluated in 16 models from phase 5 of CMIP (CMIP5) and compared with observations from 26 flux tower sites. The diurnal cycle of 2-m temperature agrees well in general with what is observed. The amplitude of the diurnal cycle of wind speed shows a large intermodel spread and is often overestimated at midlatitude grassland sites and underestimated at midlatitude forest sites. There is a substantial systematic negative bias in the nighttime net surface radiative flux, which is partly compensated for by the turbulent heat fluxes. Four models (CESM1, BCC_CSM1.1, HadGEM2-A, and IPSL-CM5A) are evaluated in more detail, including the vertical structure of the atmospheric boundary layer, at the ARM Southern Great Plains site in Oklahoma. At that site, all models tend to frequently overestimate the boundary layer depth and the wind turning in the boundary layer reveals large intermodel differences. In summer, these models exhibit a substantial warm bias with particularly high daytime temperatures. These high temperatures are associated with very small latent heat fluxes, indicating that the soil is too dry, which is likely to impact climate change scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call