Abstract
We evaluated the ability of near-infrared Raman spectroscopy (near-IR RS) to differentiate among cortical bone, trabecular bone, and Bio-Oss, a bovinebone-based graft material. We obtained a thinly sliced section of the mandible to collect cortical and trabecular bone samples and placed compacted Bio-Oss bone graft into a partially edentulous mandible in a dry human skull to obtain a comparable Bio-Oss sample. We performed near-IR RS of the 3 samples and evaluated the resultant Raman spectra to evaluate their differences. We identified 3 sets of spectroscopic markers that differentiated Bio-Oss from human bone. The first consisted of significant shifts in the location of the 960 cm-1 phosphate (PO43-) peak and a reduction in its width, suggesting that Bio-Oss is more crystalline than bone. The second was the reduced carbonate content of Bio-Oss compared to bone, as determined from the 1070 cm-1/960 cm-1 peak area ratio. The final marker was the lack of collagen-associated peaks in Bio-Oss compared to cortical and trabecular bone. Near-IR RS can reliably differentiate human cortical and trabecular bone from Bio-Oss via 3 sets of spectral markers associated with mineral crystallinity, carbonate content, and collagen content that differ significantly between them. Integrating this modality into dental practice may assist in implant treatment planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.