Abstract

In the present study, we report three methods of silica nanoparticles (SNPs) as adsorbent, ultraviolet (UV) irradiation, and microwave heating and evaluate their capabilities in reducing and eliminating zearalenone (ZEN). The offered method not only was used for ZEN detoxification, but also greatly enhanced the sensitivity of ZEN measurement. The aim of this study was to evaluate ZEN concentration in sunflower oil samples by high-performance liquid chromatography (HPLC) method. This method was successfully validated for sunflower oil samples while the limit of detection (LOD) method (signal-to-noise ratio of 3:1) was 0.5 μg/l. The acquired removal data with the HPLC method through SNPs were fitted well with Freundlich isotherm, denoting that the multi-layer adsorption took place on the adsorbent. The equilibrium adsorption capacity of ZEN was 61.02 μg/g in an optimum time of 240 min on SNPs. The experimental results were evaluated by the adsorption kinetic model, which specified the adsorption kinetics of ZEN on SNPs, obeying the pseudo-second order model. This model demonstrated that the sorption rate depended on the sorption capacity but not the concentration of the sorbate. Moreover, the method presented to determine ZEN based on the use of SNPs in sunflower oil was accomplished by the adsorption process. Furthermore, the removal efficiencies of ZEN by SNPs, UV irradiation, and microwave heating were compared and obtained to be 92.1, 96.22, and 37.30%, respectively for determined times. These results confirm the removal efficiency of these methods is sensitive enough to ZEN analysis in sunflower oil samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call