Abstract

Halite formations are attractive geothermal reservoirs due to their high heat conductivity, resulting in higher temperatures than other formations at similar depths. However, halite formations are highly reactive with undersaturated water. An understanding of the geochemical reactions that occur within halite-saturated formation waters can inform decision making regarding well construction, prevention of well clogging, formation dissolution, and thermal short-circuiting. Batch reaction and numerical 3-D flow and equilibrium reactive transport modeling were used to characterize the produced NaCl-brine in a well targeting a halite-saturated formation. The potential for inhibition of precipitation and dissolution using an MgCl2-brine and NaCl + MgCl2-brine were also investigated. Within the injection well, heating of an NaCl-brine from 70 to 120 °C caused the solubility of halite to decrease, resulting in the potential dissolution of 0.479 mol kg−1 halite at the formation. Conversely, cooling from 120 to 100 °C in the production well resulted in potential precipitation of 0.196 mol kg−1 halite. Concurrent precipitation of anhydrite is also expected. Introduction of MgCl2 into the heat exchange brine, which has a common Cl− ion, resulted in a decreased potential for dissolution by 0.290 mol kg−1 halite within the formation, as well as decreased precipitation within the production well, compared to the NaCl-brine. The halite solubility was altered by changes in pressure up to 0.045 mol kg−1. This indicates that designing and monitoring the composition of heat exchange fluids in highly saline environments is an important component in geothermal project design.

Highlights

  • Deep geothermal systems can be used to produce electricity and have the potential to become a renewable baseload power source (Jain et al 2015)

  • Reactive transport modeling was used to evaluate the interaction between a halite formation, and three heat exchange fluids in a deep geothermal system

  • Batch reaction chemical simulations Potential precipitation When injecting a NaCl-brine into a deep geothermal well, within the injection well, the NaCl-brine becomes undersaturated with respect to halite (Table 3)

Read more

Summary

Introduction

Deep geothermal systems can be used to produce electricity and have the potential to become a renewable baseload power source (Jain et al 2015). Geothermal systems require adequate temperature, natural or engineered permeability, and a heat exchange fluid. Enhanced geothermal systems (EGS) are geothermal systems, where hot rock is available, but the permeability or fluid saturation are created. Investigations into EGS for electricity production are underway in Canada and abroad, e.g., Moore and Holländer G eotherm Energy (2021) 9:8 and Williston Basin in the Canadian Prairies have the potential for sedimentary geothermal energy production (Jacek and Stephen 2010; Majorowicz and Moore 2014; Manz 2011; Walsh 2013). Due to the high cost of drilling, development has been limited

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call