Abstract

β-Amyloid (Aβ) plaques and Tau tangles are cognitive impairment markers vital for diagnosing and preventing Alzheimer's disease (AD). To systematically explore the relationship between the number or position of nitrogen atoms and their optical properties and biological properties, five series of new N, O-coordinated organo-difluoroboron probes were introduced as binding scaffolds for Aβ plaques and Tau tangles. These probes exhibited suitable optical properties for near-infrared (NIR) imaging. Probe 4PmNO-2 (4-((1E,3E)-4-(1,1-difluoro-1H-1λ4,9λ4-pyrimido[1,6-c][1,3,5,2]oxadiazaborinin-3-yl)buta-1,3-dien-1-yl)-N,N-dimethylaniline) displayed the excellent emission maximum (716 nm in PBS), a high quantum yield (61.4% in CH2Cl2), and a high affinity for synthetic Aβ1–42 (Kd = 23.64 ± 1.08 nM) and Tau (K18) aggregates (Kd = 26.38 ± 1.29 nM), as well as for native Aβ plaques and NFTs in the brain tissue from AD patients. 4PmNO-2, with significantly enhanced fluorescence (Aβ1–42, 136 fold; Tau (K18), 96 fold) and the highest initial brain uptake (11.57% ID/g at 2 min) in normal ICR mice, was evaluated further. In vivo NIR fluorescent imaging studies in living Aβ and Tau transgenic mice revealed that it could differentiate healthy and diseased animals. Further ex vivo fluorescent staining studies showed that 4PmNO-2 specifically bound to Aβ plaques and Tau tangles in transgenic mice. In summary, the probe 4PmNO-2 may be a useful near-infrared fluorescence (NIRF) probe for AD biomarkers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call