Abstract

The accuracy of myocardial motion measurements, computed from cine-phase contrast (cine-PC) magnetic resonance (MR) velocity data, was compared with directly visualized motion of MR signal voids caused by implanted tantalum markers in anesthetized dogs. Magnetic resonance imaging (MRI) data were electrocardiogram-gated and divided into 16 phases per cardiac cycle. Myocardial trajectories as a function of time in the cardiac cycle were measured using both methods for four to seven markers in each of eight animals. The peak observed in-plane excursion was 4.0 +/- 2.1 mm. The average deviation between displacements derived from velocity data versus displacements visualized directly was 1.1 +/- 0.7 mm (27.5% of the peak displacement). The difference was less if three separate MR scans were used to measure each velocity component in the cine-PC method. This improvement is probably caused by improved temporal resolution. Cine-PC MRI offers a noninvasive method for accurate quantification of myocardial motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.