Abstract

Prediction of muscle forces using optimization based models of muscle coordination is an active research area in biomechanics. Theoretical calculation of individual muscle forces depends on solving the redundancy problem. In a musculoskeletal model, redundancy arises since the number of muscles in the model exceeds the number of degrees-of-freedom present. One of the widely used methods to solve this problem is to formulate a physiologically sound cost function and optimize this function subject to mechanical equality and inequality constraint equations. In this study, force predictions obtained from different optimization-based models were compared with those obtained from experimentally measured individual muscle forces recorded during a variety of movement conditions. Advantages and limitations of the tested models were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.