Abstract

AbstractAn extensive drilling and testing program was undertaken at Carleton University, Ottawa, Canada, to characterize the aquifer for the design of an aquifer thermal energy storage (ATES) system. The substantial data base provides an excellent record of well yields and hydraulic responses to a series of aquifer tests in a faulted carbonate aquifer. Well yield variability is reflected in the wide range in specific capacity (1.4 to 75.8 L/s/m) and is dependent upon the proximity of a well to a major fault. Constant discharge data, available for nine pumping wells and several observation wells, reflect both the excellent hydraulic connection along major faults and the limited hydraulic connection between fault blocks. Three different flow models, including vertical fracture and vertical dyke (linear), and Theis (radial), are used to interpret constant discharge test data from nine pumping wells and several observation wells. In all tests, the duration of pumping is sufficient to identify early‐time linear flow along faults and late‐time pseudo‐radial flow between fault blocks. This paper demonstrates the influence of fault‐induced heterogeneity on the hydraulic response of a carbonate aquifer and demonstrates the application and limitation of simple radial continuum models to aquifers of this type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.