Abstract
Spectrally similar nature of land covers in a glacierized terrain hampers their automated mapping from multispectral satellite data, which may be overcome by using multisource data. In the present study, an artificial neural network (ANN)-based information extraction approach was applied for mapping the Kolahoi glacier and adjoining areas, using Landsat TM (Thematic Mapper) data and several ancillary layers such as image transformations and topographic attributes. Results reveal that ANN (highest overall accuracy (OA): 83.74%) outperforms maximum likelihood classifier (highest OA: 66.90%) and the incorporation of ancillary data into the classification process significantly enhances the mapping accuracy (>9%), particularly the addition of Near Infrared Red/Short Wave Infrared (NIR/SWIR) data to the spectral data. A nine-band combination dataset (spectral data, slope, Red/NIR and decorrelation stretch) was found to be the best multisource dataset. Results of the Z-tests (at 95% confidence level) also corroborate and statistically validate the above findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.