Abstract
Surface irradiance measurements with high temporal resolution can be used to detect clear skies, which is a critical step for further study, such as aerosol and cloud radiative effects. Twenty-one clear-sky detection (CSD) methods are assessed based on five years of 1-min surface irradiance data at Xianghe—a heavily polluted station on the North China Plain. Total-sky imager (TSI) discrimination results corrected by manual checks are used as the benchmark for the evaluation. The performance heavily relies on the criteria adopted by the CSD methods. Those with higher cloudy-sky detection accuracy rates produce lower clear-sky accuracy rates, and vice versa. A general tendency in common among all CSD methods is the detection accuracy deteriorates when aerosol loading increases. Nearly all criteria adopted in CSD methods are too strict to detect clear skies under polluted conditions, which is more severe if clear-sky irradiance is not properly estimated. The mean true positive rate (CSD method correctly detects clear sky) decreases from 45% for aerosol optical depth (AOD) ≤ 0.2% to 6% for AOD > 0.5. The results clearly indicate that CSD methods in a highly polluted region still need further improvements.摘要根据位于华北平原的重污染站点——香河5年的分钟级别地表太阳辐射和人工订正的全天空成像仪数据, 对21种晴空识别 (CSD) 方法进行了评估:晴空识别准确率较高的方法云天识别准确率较低, 反之亦然;由于CSD 方法采用的参数阈值不适用于污染情况, 当气溶胶含量增加时, 识别准确率呈下降趋势.研究结果显示, 利用太阳辐射数据识别晴空的方法在高污染地区使用时需进行改进.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.