Abstract
Multicast (MC) routing algorithms capable of satisfying the quality of service (QoS) requirements of real-time applications will be essential for future high-speed networks. We compare the performance of all of the important MC routing algorithms when applied to networks with asymmetric link loads. Each algorithm is judged based on the quality of the MC trees it generates and its efficiency in managing the network resources. Simulation results over random networks show that unconstrained algorithms are not capable of fulfilling the QoS requirements of real-time applications in wide-area networks. Simulations also reveal that one of the unconstrained algorithms, reverse path multicasting (RPM), is quite inefficient when applied to asymmetric networks. We study how combining routing with resource reservation and admission control improves the RPM's efficiency in managing the network resources. The performance of one semiconstrained heuristic, MSC, three constrained Steiner tree (CST) heuristics, Kompella, Pasquale, and Polyzos (1992), constrained adaptive ordering (CAO), and bounded shortest multicast algorithm (BSMA), and one constrained shortest path tree (CSPT) heuristic, the constrained Dijkstra heuristic (CDKS) are also studied. Simulations show that the semiconstrained and constrained heuristics are capable of successfully constructing MC trees which satisfy the QoS requirements of real-time traffic. However, the cost performance of the heuristics varies. The BSMA's MC trees are lower in cost than all other constrained heuristics. Finally, we compare the execution times of all algorithms, unconstrained, semiconstrained, and constrained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.