Abstract
Precipitation products are good choices to complement ground observations in hydrological research, but their accuracy is uncertain in different areas. This study aims to evaluate the systematic error characteristics of four major precipitation products, namely, Climate Prediction Center MORPHing technique(CMORPH), Climate Hazards Group Infrared Precipitation with Stations (CHIRPS), Global Land Data Assimilation System (GLDAS), and Tropical Rainfall Measuring Mission(TRMM) 3B42 v7, over the Yangtze River Basin in terms of estimating precipitation amounts and detecting events. The results show that the precipitation products have high spatial and seasonal heterogeneity of error characteristics, and the capability to capture rain occurrence decreases when rainfall intensity increases. GLDAS demonstrated the poorest performance, with the lowest correlation of 0.08 and the largest relative bias of over 25% underestimation. The possibility of GLDAS missing medium and heavy rains (>15 mm/d) reached 50%, and of falsely reporting light rainfall was up to 40%, while CMORPH outperformed the others with the highest consistency (0.39) against the gauge, the smallest root-mean-square error (RMSE) (10.28 mm), and the highest scores for most subregions. Generally, in this study GLDAS proved its inferiority to satellite-based precipitation products for hydrological applications over the Yangtze River Basin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.