Abstract

Depth dependence of hardness in ion-irradiated 316 stainless steel was evaluated by the sectioning of damaged region and subsequent nano-indentation. The range of plastically deformed region by the nano-indentation was supplementarily investigated by transmission electron microscopy. When the indentation depth was the critical indentation depth, hc, which was derived from the Nix–Gao plot, the dislocation structure was observed from the specimen surface to right below the bottom of the ion-irradiated region. To verify the depth dependence of hardness, the “multi-layer model” was introduced in this study. The multi-layer model is based on the following assumptions; (1) the ion-irradiated region can be divided into sub-layers having their own local hardness, HL; (2) the hardness can be the product of f and HL in each sub-layer where f is the volume fraction of a deformation zone; and (3) the deformation zone can be a hemisphere. Eventually, through the sectioning and following nano-indentation, HL in each sub-layer was experimentally evaluated. Further the correlation between the displacement damage and the irradiation hardening ΔH in this study agreed with that of neutron irradiation experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call