Abstract

IntroductionToday, the use of electromagnetic waves in medical diagnostic devices, such as magnetic resonance imaging (MRI), has increased, and many of its biological effects have been reported. The aim of the present study was to assess the biological effects of 1.5 Tesla (T) magnetic resonance imaging (MRI) on fertility and reproductive parameters.MethodsEighty adult male and female NMRI mice (NMRI: Naval Medical Research Institute) of age 6–8 weeks were studied and randomly divided into two study and control groups. After confirmation of pregnancy, the mice in the study group were exposed to the MRI (1.5 T) machine’s waves over the next three weeks, once a week for 36 minutes. One day and thirty-five days after the last radiation, the mice were killed in order to do the in vitro fertilization (IVF) by neck beads’ displacement and the impact on the evolution of embryos, and its quality was studied. Data were analyzed using SPSS version 20 and the significance level of less than 0.05 was considered.ResultsEmbryo morphometry showed that the total diameter and the cytoplasm diameter of the study group embryos suffered significant reduction compared to the control group, 1 day after the last irradiation (p < 0.05), but the diameter of the perivitelline space of this group’s embryos had a significant increase (p < 0.05). The qualitative results during 35 days after irradiation showed that morphologically parameters of the embryos in the study group had no significant differences from the control group.ConclusionExposure to MRI irradiation can transiently disturb the development of mouse embryos and fertility, but these effects are reversible 35 days after the last irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.