Abstract

Simultaneous Localization and Mapping (SLAM) is being developed as a hot topic issue in computer vision which nowadays, is the main core of self-localization and autonomous navigation in robotic technology and unmanned vehicles. In this way, Visual-Inertial SLAM algorithm is a popular strategy to attain high accurate 6-DOF state estimation. But such an accurate system is vulnerable to extreme movements and texture-less environments, and it sometimes fails in confronting such circumstances. In this paper, a tightly-coupled and optimization-based monocular Visual-Inertial SLAM system is proposed, which can tackle the scale ambiguity - a problem that arises by poor initialization. To perform this, the ORB-SLAM as the most reliable feature-based monocular SLAM algorithm has been selected as the base of our study. Then, to improve the accuracy, a Visual-Inertial Odometry (VIO) is carried out that fuses the camera information and Inertial Measurement Unit (IMU) data. We evaluate the performance of our system on the European Robotics Challenge (EuRoC) dataset and compare it with the state-of-the-art algorithms, providing better accuracy in some sequences owing to the improved initialization. Furthermore, we implement the real-world indoor experiment using a monocular-inertial camera to demonstrate the appropriate performance of our system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.