Abstract

This study investigated the quality changes of quick-frozen wet rice flour before and after freeze-thaw cycles. As the freeze-thaw cycle was prolonged, the water mobility of quick-frozen wet rice flour decreased and the pore size and porosity of the microstructure increased. As a result, the hardness, cooking loss, water absorption, and water precipitation of the rice flour increased, while the sensory score and viscosity decreased. Correlation analysis showed that porosity was positively correlated with the hardness and water absorption of rice flour, and negatively correlated with structural properties such as shearing work and resilience. Water absorption and water precipitation rate were positively related to cooking loss. Thus, moisture migration in rice flour induced microstructural changes to cause alterations in texture, cooking, and sensory properties. Interestingly, quick-frozen wet rice flour still possessed good texture, cooking, and sensory qualities after two freeze-thaw cycles. This study laid the foundation for the development of high-quality quick-frozen wet rice flour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.