Abstract

This study presents an approach to help understand moisture damage mechanisms and to evaluate the effects of hydrated lime as moisture damage resisting agents. To this end, various performance testing of hot mix asphalt (HMA) samples induced by moisture damage and several fundamental property measurements (stiffness, strength, toughness, and bonding energy) of mixture components were conducted. Testing data and analyses demonstrated that hydrated lime contributed to moisture damage resistance due to synergistic effects of mastic stiffening, toughening, and advanced bonding characteristics at mastic-aggregate interfaces. However, a well-controlled lime treatment is required to maximize distribution and dispersion of lime particles on aggregate surfaces. In addition to the clear effects of hydrated lime, mineral filler in the HMA samples showed its effects on damage resistance in an early stage of moisture damage due to substantial stiffening-toughening effects from filler addition. Properties and damage characteristics of mixture components measured in this study were related to macroscopic performance behavior of asphalt concrete samples, which infers that the approach herein based on the mixture components can be effectively used to evaluate (or predict) moisture damage of asphalt mixtures and pavements with much less effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.