Abstract

Abstract. MODerate resolution Imaging Spectroradiometer (MODIS) cryosphere products have been available since 2000 – following the 1999 launch of the Terra MODIS and the 2002 launch of the Aqua MODIS – and include global snow-cover extent (SCE) (swath, daily, and 8 d composites) at 500 m and ∼5 km spatial resolutions. These products are used extensively in hydrological modeling and climate studies. Reprocessing of the complete snow-cover data record, from Collection 5 (C5) to Collection 6 (C6) and Collection 6.1 (C6.1), has provided improvements in the MODIS product suite. Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Collection 1 (C1) snow-cover products at a 375 m spatial resolution have been available since 2011 and are currently being reprocessed for Collection 2 (C2). Both the MODIS C6.1 and the VIIRS C2 products will be available for download from the National Snow and Ice Data Center beginning in early 2020 with the complete time series available in 2020. To address the need for a cloud-reduced or cloud-free daily SCE product for both MODIS and VIIRS, a daily cloud-gap-filled (CGF) snow-cover algorithm was developed for MODIS C6.1 and VIIRS C2 processing. MOD10A1F (Terra) and MYD10A1F (Aqua) are daily, 500 m resolution CGF SCE map products from MODIS. VNP10A1F is the daily, 375 m resolution CGF SCE map product from VIIRS. These CGF products include quality-assurance data such as cloud-persistence statistics showing the age of the observation in each pixel. The objective of this paper is to introduce the new MODIS and VIIRS standard CGF daily SCE products and to provide a preliminary evaluation of uncertainties in the gap-filling methodology so that the products can be used as the basis for a moderate-resolution Earth science data record (ESDR) of SCE. Time series of the MODIS and VIIRS CGF products have been developed and evaluated at selected study sites in the US and southern Canada. Observed differences, although small, are largely attributed to cloud masking and differences in the time of day of image acquisition. A nearly 3-month time-series comparison of Terra MODIS and S-NPP VIIRS CGF snow-cover maps for a large study area covering all or parts of 11 states in the western US and part of southwestern Canada reveals excellent correspondence between the Terra MODIS and S-NPP VIIRS products, with a mean difference of 11 070 km2, which is ∼0.45 % of the study area. According to our preliminary validation of the Terra and Aqua MODIS CGF SCE products in the western US study area, we found higher accuracy of the Terra product compared with the Aqua product. The MODIS CGF SCE data record beginning in 2000 has been extended into the VIIRS era, which should last at least through the early 2030s.

Highlights

  • Regular snow-cover mapping of the Northern Hemisphere from space began in 1966 when the National Oceanic and Atmospheric Administration (NOAA) started producing weekly snow maps to improve weather forecasting (Matson and Wiesnet, 1981)

  • We focus on the uncertainties of the gapfilling method; we do not address the inherent accuracy of the snow maps because that has been documented elsewhere by many previous studies, at least for the MODerate resolution Imaging Spectroradiometer (MODIS) snow-cover extent (SCE) products

  • We describe some uncertainties of the Collection 6 (C6).1 MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) cloud-gap-filled (CGF) daily snowcover maps, M*D10A1F and the Collection 2 (C2) VNP10A1F, respectively

Read more

Summary

Introduction

Regular snow-cover mapping of the Northern Hemisphere from space began in 1966 when the National Oceanic and Atmospheric Administration (NOAA) started producing weekly snow maps to improve weather forecasting (Matson and Wiesnet, 1981). Using the Rutgers CDR, researchers have shown that SCE has been declining and melt has been occurring earlier in the Northern Hemisphere (e.g., Déry and Brown, 2007). This shortening of the snow season has many implications; for example, in the western US (Mote et al, 2005; Stewart, 2009; Hall et al, 2015), earlier snowmelt contributes to a longer fire season (Westerling et al, 2006; O’Leary et al, 2018) and other environmental and societal problems. Information on the full MODIS standard cryosphere product suite is available elsewhere (https://modis-snow-ice.gsfc.nasa.gov/, last access: 16 December 2019)

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call