Abstract

Hand, foot and mouth disease (HFMD) is a public health concern that threatens the health of children. Accurately forecasting of HFMD cases multiple days ahead and early detection of peaks in the number of cases followed by timely response are essential for HFMD prevention and control. However, many studies mainly predict future one-day incidence, which reduces the flexibility of prevention and control. We collected the daily number of HFMD cases among children aged 0-14 years in Chengdu from 2011 to 2017, as well as meteorological and air pollutant data for the same period. The LSTM, Seq2Seq, Seq2Seq-Luong and Seq2Seq-Shih models were used to perform multi-step prediction of HFMD through multi-input multi-output. We evaluated the models in terms of overall prediction performance, the time delay and intensity of detection peaks. From 2011 to 2017, HFMD in Chengdu showed seasonal trends that were consistent with temperature, air pressure, rainfall, relative humidity, and PM10. The Seq2Seq-Shih model achieved the best performance, with RMSE, sMAPE and PCC values of 13.943~22.192, 17.880~27.937, and 0.887~0.705 for the 2-day to 15-day predictions, respectively. Meanwhile, the Seq2Seq-Shih model is able to detect peaks in the next 15 days with a smaller time delay. The deep learning Seq2Seq-Shih model achieves the best performance in overall and peak prediction, and is applicable to HFMD multi-step prediction based on environmental factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.