Abstract

The mechanical integrity of a lithium ion battery cell can be evaluated using finite element (FE) simulation techniques. In this study, different FE modelling approaches including heterogeneous, homogeneous, hybrid and sandwich methods are presented and analysed. The basic capabilities of the FE-methods and their suitability to simulate a real mechanical safety test procedures on battery cells are investigated by performing a simulation of a spherical indentation test on a sample pouch cell. For each modelling approach, one battery cell model was created. In order to observe the system behaviour, relevant parametric studies involving coefficient of friction and failure strain of separator were performed. This studied showed that these parameters can influence the maximum force and the point of failure of the cell. Furthermore, the influence of an anisotropic separator on the results was also investigated. The advantages and disadvantages of each modelling approach are discussed and a simplified approach with a partial cell modelling is suggested to further reduce the simulation time and complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.