Abstract

Restoring neuromuscular reflex properties in the control of a prosthetic hand may potentially approach human-level grasp functions in the prosthetic hand. Previous studies have confirmed the feasibility of real-time emulation of a monosynaptic spinal reflex loop for prosthetic control. This study continues to explore how well the biomimetic controller could enable the amputee to perform force-control tasks that required both strength and error-tolerance. The biomimetic controller was programmed on a neuromorphic chip for real-time emulation of reflex. The model-calculated force of finger flexor was used to drive a torque motor, which pulled a tendon that flexed prosthetic fingers. Force control ability was evaluated in a "press-without-break" task, which required participants to press a force transducer toward a target level, but never exceeding a breakage threshold. The same task was tested either with the index finger or the full hand; the performance of the biomimetic controller was compared to a proportional linear feedback (PLF) controller, and the contralateral normal hand. Data from finger pressing task in 5 amputees showed that the biomimetic controller and the PLF controller achieved 95.8% and 66.9% the performance of contralateral finger in success rate; 50.0% and 25.1% in stability of force control; 59.9% and 42.8% in information throughput; and 51.5% and 38.4% in completion time. The biomimetic controller outperformed the PLF controller in all performance indices. Similar trends were observed with full-hand grasp task. The biomimetic controller exhibited capacity and behavior closer to contralateral normal hand. Results suggest that incorporating neuromuscular reflex properties in the biomimetic controller may provide human-like capacity of force regulation, which may enhance motor performance of amputees operating a tendon-driven prosthetic hand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call